If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (3x + -7) * 2 + 5(2x + 1)(x + -2) = -1x2[-1(3x + 1)] Reorder the terms: (-7 + 3x) * 2 + 5(2x + 1)(x + -2) = -1x2[-1(3x + 1)] Reorder the terms for easier multiplication: 2(-7 + 3x) + 5(2x + 1)(x + -2) = -1x2[-1(3x + 1)] (-7 * 2 + 3x * 2) + 5(2x + 1)(x + -2) = -1x2[-1(3x + 1)] (-14 + 6x) + 5(2x + 1)(x + -2) = -1x2[-1(3x + 1)] Reorder the terms: -14 + 6x + 5(1 + 2x)(x + -2) = -1x2[-1(3x + 1)] Reorder the terms: -14 + 6x + 5(1 + 2x)(-2 + x) = -1x2[-1(3x + 1)] Multiply (1 + 2x) * (-2 + x) -14 + 6x + 5(1(-2 + x) + 2x * (-2 + x)) = -1x2[-1(3x + 1)] -14 + 6x + 5((-2 * 1 + x * 1) + 2x * (-2 + x)) = -1x2[-1(3x + 1)] -14 + 6x + 5((-2 + 1x) + 2x * (-2 + x)) = -1x2[-1(3x + 1)] -14 + 6x + 5(-2 + 1x + (-2 * 2x + x * 2x)) = -1x2[-1(3x + 1)] -14 + 6x + 5(-2 + 1x + (-4x + 2x2)) = -1x2[-1(3x + 1)] Combine like terms: 1x + -4x = -3x -14 + 6x + 5(-2 + -3x + 2x2) = -1x2[-1(3x + 1)] -14 + 6x + (-2 * 5 + -3x * 5 + 2x2 * 5) = -1x2[-1(3x + 1)] -14 + 6x + (-10 + -15x + 10x2) = -1x2[-1(3x + 1)] Reorder the terms: -14 + -10 + 6x + -15x + 10x2 = -1x2[-1(3x + 1)] Combine like terms: -14 + -10 = -24 -24 + 6x + -15x + 10x2 = -1x2[-1(3x + 1)] Combine like terms: 6x + -15x = -9x -24 + -9x + 10x2 = -1x2[-1(3x + 1)] Reorder the terms: -24 + -9x + 10x2 = -1x2[-1(1 + 3x)] -24 + -9x + 10x2 = -1x2[(1 * -1 + 3x * -1)] -24 + -9x + 10x2 = -1x2[(-1 + -3x)] -24 + -9x + 10x2 = [-1 * -1x2 + -3x * -1x2] -24 + -9x + 10x2 = [1x2 + 3x3] Solving -24 + -9x + 10x2 = 1x2 + 3x3 Solving for variable 'x'. Combine like terms: 10x2 + -1x2 = 9x2 -24 + -9x + 9x2 + -3x3 = 1x2 + 3x3 + -1x2 + -3x3 Reorder the terms: -24 + -9x + 9x2 + -3x3 = 1x2 + -1x2 + 3x3 + -3x3 Combine like terms: 1x2 + -1x2 = 0 -24 + -9x + 9x2 + -3x3 = 0 + 3x3 + -3x3 -24 + -9x + 9x2 + -3x3 = 3x3 + -3x3 Combine like terms: 3x3 + -3x3 = 0 -24 + -9x + 9x2 + -3x3 = 0 Factor out the Greatest Common Factor (GCF), '3'. 3(-8 + -3x + 3x2 + -1x3) = 0 Ignore the factor 3.Subproblem 1
Set the factor '(-8 + -3x + 3x2 + -1x3)' equal to zero and attempt to solve: Simplifying -8 + -3x + 3x2 + -1x3 = 0 Solving -8 + -3x + 3x2 + -1x3 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| 6x-32y=18 | | (3x-7)2+5(2x+1)=-x^2[-(3x+1)] | | 2p+-1(1-p)=-2p+2(1-p) | | (3x^2)+4=16x^2 | | -2p+2(1-p)=1p+-2(1-p) | | 2p+-1(1-p)=-2p+1(1-p) | | -2p+2(1-p)=1p+-1(1-p) | | 5q=4-2p+3pq | | z/5=3 | | 3x-7=x+30 | | 2+3a+6=a | | 23x+35y=197 | | 35x+23y=209 | | 2(f-1)=8 | | 8(s-7)=-116 | | 4(4s+6)=168 | | 5(2l+1)=105 | | b/5-10=0 | | 2a-2b=12 | | w^3=-15 | | -5p+3(1-p)=3p+-1(1-p) | | y/3-2=3 | | -4p+2(1-p)=2p+-2(1-p) | | 4p+-2(1-p)=-2P+2(1-p) | | 3p+-1(1-p)=-4P+2(1-p) | | 1/2z^-2 | | 3600+625=c(c) | | 30*9=x | | 484+b(b)=625 | | 1p+-1(1-p)=-1p+1(1-p) | | 81+b(b)=225 | | x=3(.5)+-3(1-.5) |